4 research outputs found

    Compensating for Large In-Plane Rotations in Natural Images

    Full text link
    Rotation invariance has been studied in the computer vision community primarily in the context of small in-plane rotations. This is usually achieved by building invariant image features. However, the problem of achieving invariance for large rotation angles remains largely unexplored. In this work, we tackle this problem by directly compensating for large rotations, as opposed to building invariant features. This is inspired by the neuro-scientific concept of mental rotation, which humans use to compare pairs of rotated objects. Our contributions here are three-fold. First, we train a Convolutional Neural Network (CNN) to detect image rotations. We find that generic CNN architectures are not suitable for this purpose. To this end, we introduce a convolutional template layer, which learns representations for canonical 'unrotated' images. Second, we use Bayesian Optimization to quickly sift through a large number of candidate images to find the canonical 'unrotated' image. Third, we use this method to achieve robustness to large angles in an image retrieval scenario. Our method is task-agnostic, and can be used as a pre-processing step in any computer vision system.Comment: Accepted at Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 201

    CrowdNet: A Deep Convolutional Network for Dense Crowd Counting

    No full text
    Our work proposes a novel deep learning framework for estimating crowd density from static images of highly dense crowds. We use a combination of deep and shallow, fully convolutional networks to predict the density map for a given crowd image. Such a combination is used for effectively capturing both the high-level semantic information (face/body detectors) and the low-level features (blob detectors), that are necessary for crowd counting under large scale variations. As most crowd datasets have limited training samples (<100 images) and deep learning based approaches require large amounts of training data, we perform multi scale data augmentation. Augmenting the training samples in such a manner helps in guiding the CNN to learn scale invariant representations. Our method is tested on the challenging UCF_CC_50 dataset, and shown to outperform the state of the art methods
    corecore